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The structure of monoatomic liquids in the static approximation is described by a soft sphere
model and the corresponding equation of state is derived. This geometrical model is then ex-
tended to binary liquid or amorphous substitution alloys where both components have the
same size. The structure of these alloys is shown to be determined by the first neighbour order
parameter which is positive, negative or zero for segregated, ordered or disordered alloys respec-
tively. The variations of the partial structure factors with concentration are presented for these
three cases. Size effects are then studied by varying the ratio of atomic diameters. Many experi-
mental results are shown to fit this simple framework.

Introduection

Advanced liquid metal theories try to deduce the
structure from the pair potential interaction by an
approximate treatment. This problem presupposes
a good knowledge of the interatomic potential. In
order to avoid this difficulty and by following a
phenomenological approach in which potential
effects are introduced into a given structure, we
recently proposed a soft sphere model which fits
satisfactorily the most recent structure factor
determinations on a wide variety of liquid metals [1].

In this paper, we complete our previous results on
monoatomic liquids and derive the corresponding
equation of state. This ‘geometrical’ model is then
extended to binary liquid or amorphous alloys with
components of equal size. Their structure is shown
to depend mainly on the first neighbour order
parameter which is positive, negative or zero for
segregated, ordered or disordered liquid alloys re-
spectively. The variations of the partial structure
factors with concentration in these three cases are
presented. Size effects are then studied by varying
the ratio of atomic diameters. Most experimental
results on binary liquid or amorphous alloys are
finally shown to fit this simple framework.

Monoatomic Liquids

1. Basic Relations

At a given instant of time a monoatomic liquid is
characterized by its static pair distribution function
P(r) which is the probability per unit volume of
finding an atom at a distance r from another one,
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normalized so that it tends to unity as r approaches
mfinity. The corresponding static structure factor
is given by:

A(K) =1+ g [exp (i K7} [P(r) — 1] dyr

where p = N/V is the number of atoms per unit
volume.

According to the Ornstein-Zernike relation, the
small K limit of the structure factor is proportional
to the mean square fluctuation of the number den-
sity or to the isothermal compressibility

1(@17) _
= V\ op T,‘\'.

AO0)=—%—=0ksTy (1)

where kg is the Boltzmann constant and 7' the
temperature.

2. Random Hard Sphere Networks (RHSN)

2.1. Coordination Number and large K Be-
haviour of the Structure Factor

A hard sphere fluid depends on two parameters:
the sphere diameter d or the sphere volume
vo = 7 d3/6 and the packing fraction y which is the
ratio of the volume of NV spheres to the correspond-
ing fluid volume V:

y=Nuw/V =0v.
The first neighbour peak in the pair distribution
function PYS(7) is represented by a ¢ function which

is proportional to the mean number 7, of spheres
in close contact with one sphere:

d-+e
ny=o0 [PIS(r)der =127y with & <d.(2)
0
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This first neighbour ¢ peak is responsible for the
large K behaviour of the structure factor since:
lim A (S K) =1 + ny (sin(K d)/K d)

K—>oo
2.2. Structure Factor First Peak

For Kd< 5n the structure factor differs from
its asymptotic form. Thus model calculations are
needed in order to find the position K; of the first
Ay.f(K) peak. Our model leads to:

Ki>~17.64/d. (3)
The value K1d~ 7.64 differs from the value 7.725
which corresponds to the maximum of the first
neighbour term sin Kd/K d. Thus, the first AC],{;,S(K)
peak cannot be only attributed to the first neigh-
bour peak in Pg(r). On the contrary and according
to Guinier [2], K; is related to the overall atomic
arrangement i.e. to the repetition of some distance
which is proportional to the sphere diameter d and
may be named a “‘pseudoperiod”’.

2.3. Close Packed Random Hard Sphere Net-
work (CPRN)

It spheres are randomly removed from a RHSN
the pair distribution function does not change while
the structure factor decreases linearly with v,
following the relation:

AT(K) =1+ (y/yo) [AF (K) — 1].
Conversely, when y increases linearly up to the
Bernal value [3]:

ye = 0.637 4)
the extrapolated value of A (0) i.e. the number
density fluctuations of the RHSN vanish. Therefore,
holes with atomic size should be absent from Bernal
RHSN which we call the close packed random net-
work (CPRN). In the CPRN the mean volume
offered to each sphere is minimum:

ve = (volye) = 1.57 v (5)
and the close contact coordination number reaches
its maximum value:

Mo 8.1 (6)

3. Soft Sphere Liquid
3.1. Basic Relations

According to our model [1], a real liquid metal
may be represented by an assembly of Einstein
oscillators which vibrate at frequency » around the
equilibrium positions of a CPRN with randomly
distributed vacancies. The sphere diameter is de-
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duced from the position K; of the structure factor
first peak by relation (3) while the packing fraction,
which is supposed to be smaller than . is deduced
from the specific mass u by:

y = vo(u/m)
where m is the atomic mass. The number M of
vacancies in the volume V is related to the packing
fraction by equation:

Ylve=N|(N + M).

The pair distribution function (P.D.F.) and the
structure factor of such a liquid are given by:

P33(r)
= (47mo?) 32 [ PES(r — ¥) exp(— r'2/4 02) d3r”’,
A5 (K) =1 + exp(— 02 K?) [4} (K) — 1]

where :

0% = *hf coth ( . )
8aZmy 2T

and A is the Planck constant. The broadening of the
first neighbour peak in the P.D.F. is responsible for
the damping of the structure factor oscillations at
large K according to relation:
lim A3 (K) =1 + nyexp(— o2 K2) sin(K d)/K d. (7)
K —oo
Conversely, Eq. (7) allows the determination of the
vibration frequency from the damping of the struc-
ture factor oscillations.

On the other hand, owing to the broadening of
the first neighbour peak. another coordination

number Z is often used whose definition is:

d
Z =29 [P(r)dyr.
0

This coordination number is larger than 8.1 since
neighbours which were not in close contact in the
original CPRN are now included in this definition.
For most liquid metals near the melting point:
Z ~10.

3.2. Equation of State

Integration of the Ornstein Zernike relation
would lead to the equation of state, however, we
follow a more significant approach due to P.
Nozieres. The free energy of the liquid is the sum
of two contributions: the oscillator free energy [4]:

—hy
l—exp( P T )

(where U, is the zero oscillation energy)

hv
Fa:3N{——;kT1n

2
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and the vacancy free energy:

N+ M)!
Fr=MUp— len[%M!)» }
where Uy, is the vacancy formation energy while the
entropy term represents the number of arrange-
ments of M holes on N-+-M sites. Both U, and Uy
can be calculated if one assumes that only first
neighbour pairs contribute to these energies. Since
1 N
E(Z N+M
bour pairs per atom the total pair nergy is:
N

N+t M

) is the mean number of first neigh-

1
U=—NUo52

N
=—N$ZUo) + ﬂ[“z\f:'_‘ﬂ (3Z Uy)

where — Uy is the energy of one atomic pair. This

approximation leads to a zero oscillation energy:
Us=1Z U,

while the hole formation energy is given by:

N N

o ¥
N+M_L“N+M

Dy} % Ty

Remembering that V= (N + M) v, and assuming
that Ug and » are independent of the number den-
sity one obtains the equation of state:

_ (OF
P="\ov oy

kT ;— N\2
:vb—cfln l—ﬁ;—c— — Uz e 7 (8)

The same result has already been obtained [5] by
Barker in his lattice theory of the liquid state. At
low temperature, the isotherms exhibit two extrema
with one liquid and one gaseous branch while, at
high temperature, these isotherms are monotonic.
The critical temperature is given by:

kTe= (Ua/2) = (ZUo/4).

In the case of rare gases, where measurements are
available, the calculated 7. value is larger than the
experimental one. This result is not surprising since
the model becomes too crude at low density where
the vibration frequency should depend strongly on
the density. However, the discrepancy is less than
in Barker model because the coordination number Z
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is approximately equal to 10 instead of 12 which
is the value of a close packed lattice used by Barker.

Simulation of Binary Liquid Alloys
by Hard Sphere Aggregates

For the sake of simplicity vibrational effects are
excluded from our binary alloy study. In practice,
hard sphere mixtures should provide a good de-
scription of liquid alloys where atomic radii are
known to be additive and the structure is dominated
by local order phenomena.

A liquid hard sphere alloy can be simulated by a
randomly oriented aggregate (or cluster) with vo-
lume V containing N; spheres of diameter d; and
N> spheres of diameter ds. For a given packing
algorithm, such an aggregate depends on three
parameters:

— the sphere diameter ratio 6 = dz/d; ,

— the atomic concentration of chemical species 1

c1= N1/(N1+4 N2) = M1/N
(or ca= N32/N =1 —¢1)

and the total packing fraction:
7wt Npdy3 + Nod3
"= 4 '

The partial packing fractions of species 1 and 2 are
deduced from y, 0 and ¢; by means of relations:

a1 c2 03

n= T Le’ NPT iael 9)

1. Geometrical Packing Algorithm

In order to study the structure variations of hard
sphere mixtures with concentration, sphere diam-
eter ratio and local order, 80 aggregates contain-
ing 5000 spheres have been built with the aid of the
time saving computing techniques described in Ref.
[1]. The following geometrical packing algorithm has
been used: Starting from an initial triangular seed
of three spheres in contact, each aggregate is grown
by successive additions of new spheres in contact
with three spheres 0, A and B of the already existing
aggregate. The ‘‘central” particle 0 is randomly
chosen in the cluster and the pair A, B of particles
belongs to its close neighbourhood Q4. The choice
of the pair A, B among all pairs belonging to £y as
well as the chemical nature of the new particle P
depend on some chemical packing algorithm which
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determines the local chemical order and will be
specified in the next section. If dy, ds, dp and dp
are the diameters of spheres 0, A, B and P, the
coordinates of P are easily calculated since it is
situated at distances % (do+dp), % (da+dp) and
1 (dp+dp) from 0, A and B. If the new sphere P
does not overlap any sphere of its close neighbour-
hood Qp it is integrated to the cluster. The process
is then repeated by chosing other pairs A, B be-
longing to the neighbourhood of 0 until £y is full,
in which case another central particle 0" is randomly
chosen in the cluster and so on.

2. Chemical Packing Algorithms

In analogy with order phenomena in solid
solutions, one may distinguish disordered liquid
alloys where chemical species are randomly mixed,
ordered liquid alloys where unlike atoms attract
each other and segregated liquid alloys where like
atoms attract each other. These three alloy classes
have been simulated by means of simple chemical
packing algorithms. In all these algorithms the
chemical nature of a particle P is specified with the
aid of a chemical index 7p which is equal to 1 or 2
if P belongs to species 1 or 2.

Disordered alloys have been simulated with the
aid of a chemical packing algorithm R1 which is
symmetric with respect to both chemical species.
According to R 1, the new particle P which is added
to the growing cluster with actual concentration ¢,
belongs to species 1 if ¢15 =< ¢ and to species 2 if
c1a > ¢1. P is brought tangentially to the sphere 0
and to a randomly chosen pair A, B pertaining
to Q() *,

Special attention has been paid to ordered alloys
which have been simulated with the aid of two
chemical packing algorithms, namely 01 and 02.

According to algorithm 01, the new particle P
belongs to species 1 if ¢1a = ¢1 and to species 2 if
c1a > c¢1. It is brought tangentially to the sphere 0
and to a pair A—B pertaining to £y which is chosen
so as to maximize the number of 1—2 contacts be-
tween 0, A, B and P, i.e. to make the sum of their
chemical indices 9 4 ¢4 4 ¢ + ip as close as pos-

* A second algorithm R2 for disordered alloy generation
has also been tested in which a random number W is first
chosen in the interval [0.1] and thenew particle P belongs
to species 1 if W = ¢; or to species 2 if W > ¢;. Within
the precision of our calculations, this algorithm gives the
same result as the first one because randomness is already
present in the choice of 0, A and B.
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sible to 6. This chemical packing algorithm is sym-
metric with respect to both chemical species.

According to algorithm 02, a pair A—B of par-
ticles is first randomly chosen in Q. If one of the
three particles 0, A and B belongs to species 1, the
new particle P belongs to species 2 while if 0, A
and B belong to species 2, P belongs to species 1 if
c1a = c1 and to species 2 if ¢13 > ¢1. As usual, P is
then brought tangentially to the spheres 0, A and B.
This new ordering rule is asymmetric with respect
to chemical species since 1-1 contacts are forbidden.
(It is obviously impossible to forbid 1-1 and 2-2
contacts at the same time, or to forbid 1-2 con-
tacts.)

Segregated alloys have been simulated with the
aid of the symmetric packing algorithm S. Accord-
ing to S, the chemical nature of the new particle P
is still 1 if c1a<<cp and 2 if ¢13>c¢1. It is brought
tangentially to the sphere 0 and to a particle pair
A—B pertaining to £y which is chosen so as to
maximize the number of like contacts between 0,
A, B and P, i.e. to make the sum of their chemical
indices 79 + 74 + i+ tp as close as possible to
4 or 8.

3. ¢1 and O Variation Range

If symmetric algorithms are used (R1, 01, S) the
variation of the alloy structure with concentration
and sphere diameter ratio 0 may be studied in the
reduced intervals:

0=a=l1,
or 0205,

o=>1
0>0

since the following symmetry relations are fulfilled

P3l(rids) = PY (r/dy)
Pl (rjdis) = P%% (rldss) ,

or  AYY(Kds) = A% (K dy), (10)
A3 (K dyg) = ALY (K dys)

where ¢'1=1—c¢;, ¢’ =1/0 and dyg= % (dy + dp).
If the non symmetric order algorithm 02 is used,
concentrations larger than ¢]***(9) cannot be reach-
ed. Table 1 shows that c¢]**(9) corresponds to a
constant number of 2-2 contacts per atom 2:
75a (0) =~ 4. Actually, #5i" is the minimum value
of the 2-2 partial coordination number which is
needed to build a continuous RHSN of spheres 2
with isolated atomic holes for the accomodation of
non contacting spheres 1.
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Table 1. Maximum concentration and minimum

0 0.80 0.87 0.95 1 1.05 115 1.20 partial coordination number in ordered alloys
obtained by algorithm 02.

Cr**(0) 0.220 0.246 0.272 0.287 0.315 0.356  0.396

732" (0) 3.94 3.92 3.94 4.01 3.92 3.96 4.02

In practice, the variations of the alloy structure
have been studied with 109, concentration steps
and for values of the atomic diameter ratio (6 =0.8,
0.87, 0.95, 1, 1.05, 1.15, 1.25) which cover most of
the experimental range. Numerical values are
available on demand.

4. Shape of the Aggregates

A spherical shape is given to the clusters by im-
posing the condition that the distance r; between a
particle and the center of the cluster must be less
than:

d 1 N 1/3

<< ) [ (e1+ 0263)] = Tmax -
Y

Conversely, the cluster radius R is deduced from the

mean distance of the particle to the center of the

cluster according to relation:

-+ 41 %
R:—?;rngﬁgn.

R may also be calculated from the mean square
distance 7,5 of the particles to the center of the
cluster:

The comparison between R and R’ leads to the
definition of a sphericity coefficient « = R’/R which
should be equal to 1 for a perfectly spherical
cluster. Departures from sphericity are character-
ized by the relative difference (o« — 1)/a which, for
all our clusters, is less than 10-3.

5. Partial Pavr Distribution Functions

The partial pair distribution functions Pggs(r) are
defined as the probability per unit volume of finding
an o particle at a distance » from another § particle
normalized in such a way that they tend to unity
as r approaches infinity. These functions are de-
duced from the number dNug(r) of distinct «-f
atomic pairs in the cluster whose distance

b —

i rf— %] lies in the interval 7, r + dr:

dN,5(r) = cacp02(2 — dup) S(r) Pug(r)dr

for r<2R (11)

where dyp is the Kronecker function (dxp = 0 if
a==pf and dyp=1 if « = f), and

S(r)y=3+a22R—1r)24R+r)r2

a geometrical factor due to the finite size of the
spherical cluster.

6. Partial Coordination Numbers

Within a sphere of radius », the mean number
Zyp(r) of B atoms surrounding an « one is given by :

Zoapg(r) = jPaﬁ(u) 4ru2du(N|/V)cg

and the total number Z,(r) of atoms surrounding
an « one by:

Zig(r) = Zzw(r) ;

In hard sphere mixtures, where first neighbour
peaks are described by 0 functions, it is useful to
consider the mean numbers 745 of f atoms in close
contact with an « atom, or partial coordination
numbers:

Nap = Zap(dap + €)

where ¢ is very small with respect todyg (e = 0.05d;
is practically equal to the step of our P,g cal-
culations).

The non diagonal partial coordination numbers
fulfill the obvious relations:

(12)

NapCa = Npacg Tor o ==p. (13)

The total number of close contact neighbours to an
o atom are given by:

M= 2, Ny (14)

7. Bhatia Thornton’s Partial structure Factors

The coherent scattering cross-section of a liquid
alloy do/df2 may be expressed with the aid of
several partial structure factor (P.S.F.) sets which
are linear combinations of one another [6]. Each set
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completely defines the alloy structure. However, the
physical meaning of each set is different and it is
preferable to chose the set according to the physical
nature of the problem being studied.

In the case of binary alloys, where the set of
independent scattering factors b; and b may be
replaced by the set:

5=61b1—|-02bz, Abel—bz

Bhatia and Thornton [7] have introduced a set of
structure factors which are quite useful for the
study of local order phenomena since they are
associated with the different correlations between
total number density and concentration. The cross-
section is then expressed as:

dO’/d.Q = 52 SNN + 261 I;Ab S.’\'a + C1 Cg(Ab)ZSclc1 .

b2Syy is the cross section of the “total” liquid
which one measures when both alloy components
have the same scattering factors.

Bhatia and Thornton (B.T.) partial structure
factors fulfill simple inequality relations arising
from the fact that do/d2 must be a positive
quadratic form in b and Ab:

SNN%O¢ Sclcl 20’
SNN Sm(‘x = (01/62) SA2\'6‘1 S

(15)

Snw, Snye and S¢e may be calculated from their
Debye sum expressions [6] or from the following
integral representations:

Sy =
1+ g [ (12 P11+ €22 Pag + 2c102 Pro — 1) eikrdgr,
SA\'Cl -
0C2 I[Cl Py; — ¢y Py + (ca — ¢1) P12] eiKr dgr (16)

St‘xt‘l =
1+ pcica [ (P11 + Pag — 2 Pra) eikrdgr.
However, in both methods, the truncation at
r = 2 R produces spurious oscillations for

K < 6/(d1+ds) .
Therefore the small K limits of the partial structure
factors are not accessible by our calculations and

must be deduced from the study of density and con-
centration fluctuations.

8. Other Sets of Partial Structure Factors

A second expression of the cross-section is given
by [8]:
do/dQ = > babs(cacs)V2 Nug(K) .
af
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The integral representation of the corresponding
partial number (P.N.) structure factorsis:

Nop=0up+ 0(cacp)/2 [[Pug— 1] eiErdyr.

The diagonal term b2 cy Nyy represents the cross-
section of partial liquid « and must be positive. As
K approaches infinity it tends to:

lim Nyy =1+ nggsin(Kdy)/K dy

K —>o0

(17)

except when 7,4 = 0.

Fournet, Faber and Ziman [9], [10] (FFZ) give
another expression for the coherent cross-section of
a liquid alloy:

do/dQ
= % ancﬁ(ba — bﬁ)z + ZCaCﬂbabﬁAaﬁ(K) .
of ap

The FFZ partial structure factors have the following
integral expressions:

Aup=1+ o [ (Pap—1)eikrdgr (18)

which do not explicitly involve the concentrations.
Therefore the concentration variations of the FFZ
structure factors characterize the deviations from
the ideal behaviour where the partial pair distribu-
tion functions are concentration independent. The
diagonal FFZ structure factor Ay, which is not
proportional to any partial cross-section fulfills
a complex inequality relation [11].

Substitution Alloys: 6 =1

1. Relation Between Structure and Order Parameter &

The study of liquid alloys with components of
equal size or substitution alloys, displays the effect
of pure chemical ordering. In such cases, within our
simple algorithms, both kinds of atoms have the
same total number of neighbours for all pair
distances:

71 (r) = Za(r)

and the partial pair distribution functions fulfill
the following relations:

¢1 P11+ c2 Pia = c2 Pog + ¢y Poy = Pq(r) (19)

where Pg(r) is the pair distribution function of the
pure hard sphere liquid with the same sphere
diameter d = d; =ds. Thus, there are only two
independent partial pair distribution functions.
Furthermore, the maximum packing fraction is the
same as for pure liquids: y. = 0.637 and the co-
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ordination numbers are related to y by:

m=ne=1ny=12Ty. (20)

On the other hand, a statement equivalent to rela-
tion (19) is that there is no correlation between
local number density and concentration since the
permutation of an atom 1 by an atom 2 changes the
local concentrations without changing the local
densities. As a consequence, the use of B.T. forma-
lism is particularly convenient in that case since:

Sy =1+ g [[Pa(r) — 1] eikrdgr = A} (K)
(21)

is independent of the local chemical order and equal
to the structure factor of the pure liquid with the
same packing fraction, while:

Sve=10 (22)

and:

Scc =1+ ge1 [[P11 — Pi2] eiKrdgr (23)

completely defines the local chemical order.

Let us introduce the Bethe first neighbour order
parameter [12] which has been used by Steeb and
Hezel [13] in the analysis of their data on Mg-Ag
alloys:
na1 1

f=1l———=1———, (24)
Nz Ci1

The large K behaviour of Syy and Sc¢c¢ is parti-
cularly revealing since it only depends on 7z, and &

through the asymptotic relations:

lim Syy = 1 -+ 7, [sin (K d)/K d], (25)
K—oo
lim Sce = 1 + &7, [sin (K d)/K d] . (26)

K—>oo

These asymptotic forms become fairly good ap-
proximations beyond K d =57 but they do not hold
below Kd~ 5n. In particular, at smaller K values,
the behaviour of S¢¢ is related to the overall atomic
order and also depends on order parameters of more
distant neighbours. However, the qualitative be-
haviour predicted by Eq. (25) is still valid for small
K and Sc¢c superstructure oscillations increase with
|€| (see Figure 1). Inversely, knowing ¢; and the
amplitude of S¢¢ first extrema which are not too
sensitive to vibrational effects, it should be possible
to calculate & and to derive the mean proportion of
like to unlike atoms around each atom (see Table 2).

333
P T T T T
4
2+ -
+ +
1 il . PRI .
F LK e o T
7
-’-
+++t
1 1 1
0 1 2 3 4 rld
Sl T T
Y=0518
2~ .
1 1 "
0 10 20 Kd
ESPPSL (14 L B S O L B B LB
g
Lo fory o pop e b g g g eyt b g o) g
Q 10 20 Kd

Fig. 1. Variations of B.T. structure factors with order pa-
rameter £ in substitution alloys.

2. Disordered Alloys: £ =10

This is the simplest case where the presence of the
second component introduces randomly distributed
holes in the RHSN of the first component and vice
versa. In these conditions, all three partial pair
distribution functions are equal and concentration
independent (see Figure 1):

Py3 = P1g= Pga = PJ5(r)
and the partial coordination numbers are given by:
Ni1= M21=C1My,
N1z = N22 = C2 Ny .

As a consequence & = 0 and these alloys give rise
to a constant Laue diffuse scattering Scc = 1. The

(27)
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Table 2. Variation of the first Syx and Scc extrema with & in substitution alloys (y = 0.518).

Algorithm 02 02 02

01 N S

C1 0.10 0.20 0.287
1

n12/M1 1
&

—0.110
Snn(K1)-1 1.268
Scc(Ks)-1

0.182
Scc(K1)-1 —0.079

—0.236
1. 68
0.476

—0.181

—0.381
1.245
0.784

—0.288

—0.391

—0.279

0.5

; 0.3
0.694

0.644
0.120
1.230
—0.140
0.077

0.5
0.441
0.116
1.235
—0.159
0.093

1.268
0.869

associated FFZ partial structure factors are equal,
positive and concentration independent:

A=A =Ap=AF (K).

This is the unique case where FFZ structure
factors do not depend on concentration. Therefore
the concentration method for partial structure
factor determination is subject to the very restric-
tive conditions: 6 =1, £ = 0.

3. Ordered Alloys: £<< 0
3.1. Common Properties

In ordered alloys obtained by algorithms 01 or 02,
the presence of the second component introduces
non randomly distributed atomic holes in the RHSN
of the first component and vice-versa. As a conse-
quence, the partial P.D.F. depend on concentration.

Since the behaviour of Syy equally depends on
all chemical pairs, it is not modified by atomic
ordering. Thus the first Syy peak at K; is still
related to d through relation (3). On the other hand,
in close analogy with the case of order phenomena
in crystallized alloys, atomic ordering produces an
overall repetition of a new distance ds. This new
pseudoperiod is related to the chemical packing
algorithm, i.e. to the order parameters of the first
few neighbours and gives rise to a sharp “super-
structure” peak at

Ks=0612K, . (28)

It turns out that ds; can be interpreted as the

distance between two atomic “layers” belonging to

the same chemical species separated by one atomic

“layer” belonging to the other chemical species:
2)2 d

T3 T T os12”

On the other hand, at large K, Sy and S¢c oscillate
in phase opposition according to relations (25)

and (26).
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Fig. 2. Variations of partial pair distribution functions
with concentration in ordered substitution alloys obtained
by algorithm 02.

3.2. Maximum Order Alloys

In maximum order alloys where 1-1 contacts are
forbidden, the main features of the partial P.D.F.
are (see Figure 2):
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i) the disappearance ot the first neighbour delta
peak in Pj; corresponding to: 711 = 0 for all con-
centrations;

ii) the finite width of the first P;; maximum
which is the second neighbour peak;

iii) the increase of the first neighbour delta peak
in Pjg corresponding to 712 = 71 = 12.7 y.

As a consequence in reciprocal space, A1 is
almost concentration independent (i), tends to a
large negative value at small K and displays a
sharp superstructure peak at Kg (ii) together with
strongly damped oscillations at large K (ii) (see
Figure 3). This 41; behaviour has also been pre-
dicted by Laty et al. [14] in the dilute alloy limit.
On the other hand, 412 (K) tends to a positive value
at small K and displays a superstructure dip at Kg
together with increased oscillations at large K (iii)
(see Figure 3). All these 415 features increase with
concentration ¢;. 422 (K) is almost concentration
independent except for a superstructure bump at
Kg whose height increases with ¢; (see Figure 3).
This indirect effect is due to the regular array of
holes introduced by the ordered component 1 in the
RHSN of component 2.

In Figure 3, we have also plotted the variations
of the P.N. structure factors with concentration.
Their peak positions are obviously the same as for
FFZ structure factors but Ni; and Ney do not
exhibitany negative part as anticipated in Part 8
of the last section.

4. Segregated Alloys: & >0

The behaviour of these alloys, which correspond
to £ > 0, can be inferred from the behaviour of
ordered alloys obtained by algorithm 01 by invert-
ing the roles of like and unlike chemical pairs.
Owing to the overall increase of the minimum
distance between unlike atoms, S¢¢ exhibits a
superstructure dip at Ks = 7.64/ds where ds is the
distance between two atomic Jayers belonging to
different chemical species separated by one atomic
layer. Consequently A1; and 422 tend to positive
values at small K and display superstructure dips
at Kg together with increased oscillations at large
K while A12 exhibits a superstructure bump at Kg
and reduced oscillations at large K (see Figure 4).
This A1 behaviour has also been predicted by
Latyet al. [14] in the dilute alloy limit.
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Fig. 4. FFZ structure factors of segregated substitution
alloys.

Size Effeets

When alloy components differ in atomic diam-
eter, the maximum packing fraction may be larger
than in a pure hard sphere liquid since holes smaller
than atomic size in the RHSN of the larger spheres
can be filled by the smallest spheres [3]. However,
we do not concentrate on this problem and our
calculations correspond to y = 0.535.

1. Disordered Alloys
1.1. Coordination Numbers

The partial coordination numbers obviously
depend on the maximum (integer) number p(d) of
spheres with diameter d; which can surround a
sphere with diameter d. p(d) increases with o
following a step-like curve whose discontinuities are
given by the approximate Fejes Téth equation [15]:

Y A G ok s
p—2 6]

40(0+2)°
This equation is exact for p = 3, 4, 6 and 12 (i.e.
for equilateral triangle, regular tetrahedra, octa-
hedra and icosahedra) and when p approaches in-
finity i.e. when the surface of sphere 2 is almost
plane and covered by an hexagonal lattice of sphe-
res 1:

lim p = (27/)/3) 62.

500
Exact values of p(d) discontinuities which are
slightly larger than T6th values (see Figure 5) have
been calculated by Schiitte [16]. A good approxima-
tion to the lower limit of the Schiitte curve in the
interval 0.5 << § < 1.5is the linear relation:
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1 |
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Fig. 5. Variations of the maximum number of close contact
neighbours with the sphere diameter ratio

a) Schiitte and van den Waerden values [16],
b) Fejes Toth approximation [15],
c¢) linear approximation (29).

p~126—1 (29)

where p is no more an integer (see Figure 5).

Thus it is natural to assume that the partial co-
ordination numbers of disordered alloys are ap-
proximately equal to:

oy By d 6
Mm=y-g Tt ed’ Kk L B c1+c20

(30)

where d = ¢;d; -+ cads is the mean sphere diameter.
For y = 0.535, numerical calculations confirm this
assumption with a precision better than 0.5%,.
However, the variations of coordination numbers
712 and 721 with concentration do not follow the
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linear relations (27) (see Figure 6). Therefore it is
difficult to define an order parameter which sepa-
rates local chemical order effects from size effects.

1.2. Variation of Disordered Alloy Struc-
ture With Concentration and Sphere
Diameter Ratio

In disordered alloys randomly distributed holes
are introduced by component 2 in the RHSN of
component 1 but their size differs from d;. As a
consequence, the partial pair distribution functions
depend on concentration and sphere diameter ratio.
This dependence is mainly reflected in the first
neighbour delta peaks of the partial P.D.F. through
the partial coordination numbers 744 studied in the
last section. The other P;; oscillations shift towards
larger r as § increases from 1 upwards while the
other Pjps oscillations are less sensitive to ¢ varia-
tions (see Figure 7).

The corresponding FFZ structure factors do not
exhibit any superstructure peak nor large negative
part. However, their first peaks become more and
more asymmetric and the oscillation damping more
and more important as ¢ goes away from 1 (see
Figure 8). The partial structure factor 44, of the
smallest size component is obviously the most
affected. Numerical calculations show that the posi-
tions K%P of Ayp first maxima are approximately
given by the phenomenological relation:

1 5
K = - [7.64 — 4.32(

-
oB daﬁ

for 0.8 <0< 1.25. (31)

Conversely, from the positions of the first peaks of
the experimental P.S.F. one may calculate d;1, di2
and dgz and check the validity of the additivity law
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Fig. 6. Variations of the partial coordination numbers with concentration and sphere diameter ratio in disordered alloys.
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Fig. 7. Variations of the partial pair distribution functions with sphere diameter ratio in disordered alloys.
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for atomic diameters since dj2 should be equal to
1 (d11 + da2) = (d1 4+ d2) .

On the other hand, Sy¢ ‘‘size oscillations” appear
which are due to the correlation between number
density and concentration. Sy¢ and Scc size oscilla-
tions increase as & goes away from 1. Syy first
peak is situated at:

KXY = 7.64/d (32)

as might be expected (see Figure 8). According to
relations (16) BT structure factors display beating
oscillations at large K between three terms propor-
tional to sin (Kd;)/Kdy, sin (Kdi2)/Kdi2 and
sin (K d2)/K ds. This behaviour is usually masked
by the oscillation damping due to atomic vibrations.
Nevertheless, it can explain the long range of BT
structure factor oscillations in disordered alloys.

2. Ordered Alloys

2.1. General Behaviour

The qualitative behaviour of ordered alloys with
nonequal size components is the same as the one of
ordered substitution alloys. Let us compare the
BT structure factors of ordered alloys (obtained by
algorithms 01 or 02) with the BT structure factors
of disordered alloys corresponding to the same ¢
value. Syy is almost insensitive to local chemical
order and identical to Syn of disordered alloys. In
particular the position of its first peak is still given
by Equation (32). On the other hand, the position
of Syc size oscillations is the same as in disordered
alloys but their amplitude is smaller. The main
difference with disordered alloys lies in the first S¢¢
superstructure peak whose relative position with
respect to Syn first peak is almost independent of
0 and given by equation: Kg=~ 0.61 K;. Sc¢ oscil-
lations at larger K values are identical with those
of disordered alloys (see Figure 10).

2.2. Variation of the Structure Factors of
Maximum Order Alloys

Maximum order alloys obtained by algorithm 02
are characterized by the complete disappearance of
the Pj; first neighbour delta peak (see Figure 9).
Consequently, 411 exhibits a large negative part at
small K, a strong superstructure peak at Kg(d) and
is strongly damped at large K. In particular it only
displays two oscillations if 6 > 1 and three oscilla-
tions if << 1 (see Figure 10). On the other hand,
Ajs reaches positive values at small K and displays
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Fig. 9. Variations of the partial pair distribution functions
with sphere diameter ratio in ordered alloys obtained by
algorithm 02.

a negative superstructure dip at Kg and increased
oscillations at large K. Finally, A2z only displays an
“indirect” superstructure bump which may reduce
to a slight asymmetry of the first peak if J is larger
than 1 (see Figure 10).

Comparison with Experiments

1. First Results

A direct comparison between calculated and mea-
sured PSF is preferable to a comparison between the
corresponding PDF which requires a Fourier trans-
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form of the experimental data and is subject to
truncation and normalization errors. Furthermore,
conclusions may be drawn from the behaviour of
the PSF in a limited K interval since local chemical
order phenomena produce characteristic effects be-
fore the first PSF peaks and are dampened by
vibrational effects at large K.

The observation of prepeaks in the scattering
patterns of liquid alloys has been shown to be
related to order phenomena by Steeb et al. [13] as
early as 1966 and many analogous studies have since
been performed [17]—[22]. However, since model
calculations show that partial structure factors
usually depend on concentration, we treat in detail
those later partial structure factor determinations
which are not based on the assumption of concen-
tration independency. Such a partial structure
factor determination in binary alloys requires the
measurement of three independent cross-sections
corresponding to the same concentration and the
resolution of a linear system of three equations in
A1, A12 and Ao [23]. This delicate procedure has
been achieved in only a few particular cases.

2. Disordered Alloys

The first measurements not based on the assump-
tion of concentration independency were performed
by Enderby, North and Egelstaff [11] using the
isotopic substitution method. Their results show
that Cug-Sns liquid alloys are disordered since the
PSF do not exhibit any superstructure peak nor
large values of 4;;(0). Furthermore, Cug-Sns partial
structure factors exhibit large first peak asym-
metries corresponding to a strong size effect. How-
ever, the atomic diameters which are deduced by
relations (31) from the position of the PSF first
peaks seem not to be additive. This result is con-
firmed by North and Wagner measurements on the
same system [24]. It may be related to the ‘anom-
alous’ shoulder on the first peak of the pure tin
structure factor which indicates a special liquid Sn
structure or to a departure from sphericity of the
interatomic Sn-Sn potential. It may also arise from
covalency effects.

3. Ordered Alloys

In ordered alloys, partial structure factor deter-
minations not based on the assumption of concen-
tration independency have been reported by Blétry

341

Liso Pbso [27]

Model
8:1 §-0234 y=0535
Algorithm 0y

S¢c ----

----¢/__\\:=—_~../:'.
£ —/.f:\\\/' -..-‘\/

|

0 16 20 30 kd

Fig. 11. Comparison between model curves and experimen-
tal B.T. structure factors in lithium based alloys. By cour-
tesy of Drs. Ruppersberg, Speicher and Reiter.
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and Sadoc [25] in their study of amorphous ferro-
magnetic Co-P alloys by the polarized neutron
method. Their results display all the qualitative
features of ordered alloys listed below:

i) large negative value of App(0) and super-
structure peak at Ksin App ,

ii) large negative superstructure dip at Kg in
ACO—Pa

iii) ‘indirect’ superstructure bump at Kgs in
Aco-co-

However, their precision is too limited for a quanti-
tative interpretation.

Ruppersberg, Speicher and Reiter’s measurements
on lithium based alloys [26], [27] are much more
accurate and agree almost perfectly with model
calculations (see Figure 11). In both Li-Ag [26] and
Li-Pb [27] systems, size effects seem to be negligible
since the three FFZ structure factors correspond to
the same first peak position. Thus Sy¢(K) =~ 0 and
the position of S¢¢ superstructure peak at Ks is in
good agreement with Equation (28). Furthermore,
from the amplitude of S¢c oscillations one deduces
the following values for the order parameters:

&= —0.32+0.05 or nri-pv/nLi =~ 0.66
in LisoPbso alloys

and &= —0.24 4 0.05 or nri—ag/nLi=~0.35
in Li72Ag23 alloys.

At large K, Scc oscillations are in phase opposition
with Syn oscillations in agreement with Equations
(25) and (26). Furthermore, it is very likely that the
observed oscillation damping could be interpreted
if atomic vibrations were taken into account. Such
a good agreement between experimental and calcu-
lated partial structure factors of binary alloys
provides an a posteriori proof for the validity of the
model in the pure metal case.
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