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The structure of monoatomic liquids in the static approximation is described by a soft sphere 
model and the corresponding equation of state is derived. This geometrical model is then ex-
tended to binary liquid or amorphous substitution alloys where both components have the 
same size. The structure of these alloys is shown to be determined by the first neighbour order 
parameter which is positive, negative or zero for segregated, ordered or disordered alloys respec-
tively. The variations of the partial structure factors with concentration are presented for these 
three cases. Size effects are then studied by varying the ratio of atomic diameters. Many experi-
mental results are shown to fit this simple framework. 

Introduction 

Advanced liquid metal theories try to deduce the 
structure from the pair potential interaction by an 
approximate treatment. This problem presupposes 
a good knowledge of the interatomic potential. In 
order to avoid this difficulty and by following a 
phenomenological approach in which potential 
effects are introduced into a given structure, we 
recently proposed a soft sphere model which fits 
satisfactorily the most recent structure factor 
determinations on a wide variety of liquid metals [1]. 

In this paper, we complete our previous results on 
monoatomic liquids and derive the corresponding 
equation of state. This 'geometrical' model is then 
extended to binary liquid or amorphous alloys with 
components of equal size. Their structure is shown 
to depend mainly on the first neighbour order 
parameter which is positive, negative or zero for 
segregated, ordered or disordered liquid alloys re-
spectively. The variations of the partial structure 
factors with concentration in these three cases are 
presented. Size effects are then studied by varying 
the ratio of atomic diameters. Most experimental 
results on binary liquid or amorphous alloys are 
finally shown to fit this simple framework. 

Monoatomic Liquids 
1. Basic Belations 

At a given instant of time a monoatomic liquid is 
characterized by its static pair distribution function 
P{r) which is the probability per unit volume of 
finding an atom at a distance r from another one, 
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normalized so that it tends to unity as r approaches 
infinity. The corresponding static structure factor 
is given by: 

A(K) = 1 + q Jexp {iKr} [P{r) - 1] d3r 

where q = Nj V is the number of atoms per unit 
volume. 

According to the Ornstein-Zernike relation, the 
small K limit of the structure factor is proportional 
to the mean square fluctuation of the number den-
sity or to the isothermal compressibility 

z — U - ) • 
x _v\Zp )TtN 

N2 - N2 A(0) = =qJCbTx (1) 

where kB is the Boltzmann constant and T the 
temperature. 

2. Bandom Hard Sphere Networks [RHSN) 

2.1. C o o r d i n a t i o n N u m b e r and large K Be-
hav iour of the Struc ture F a c t o r 

A hard sphere fluid depends on two parameters: 
the sphere diameter d or the sphere volume 
vq — 7td3l6 and the packing fraction y which is the 
ratio of the volume of N spheres to the correspond-
ing fluid volume V: 

y — N Vol V = Q • 

The first neighbour peak in the pair distribution 
function P|*s (r) is represented by a d function which 
is proportional to the mean number rjy of spheres 
in close contact with one sphere: 

d + e 
r)y=Q$ P$s (r) d3r = 12.7 y with e d. (2) 

o 
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This first neighbour ö peak is responsible for the 
large K behaviour of the structure factor since: 

lim^(£sin = 1 + rjv(sm(Kd)IKd) 
K—*oo 

2.2. S t ruc ture F a c t o r First Peak 
For Kd<5n the structure factor differs from 

its asymptotic form. Thus model calculations are 
needed in order to find the position K\ of the first 
A f y ( K ) peak. Our model leads to: 

K x ^ l M / d . (3) 
The value K\d^ 7.64 differs from the value 7.725 
which corresponds to the maximum of the first 
neighbour term s inKdjKd. Thus, the first Af*(K) 
peak cannot be only attributed to the first neigh-
bour peak in Pd{r)- On the contrary and according 
to Guinier [2], K\ is related to the overall atomic 
arrangement i.e. to the repetition of some distance 
which is proportional to the sphere diameter d and 
may be named a "pseudoperiod". 

2.3. Close Pa eked R a n d o m Hard Sphere Net -
work (CPRN) 

If spheres are randomly removed from a RHSN 
the pair distribution function does not change while 
the structure factor decreases linearly with y, 
following the relation: 

ÄS*(K) = l + (yly0)[Af*(K)-l]. 
Conversely, when y increases linearly up to the 
Bernal value [3]: 

yc — 0.637 (4) 
the extrapolated value of A (0) i.e. the number 
density fluctuations of the RHSN vanish. Therefore, 
holes with atomic size should be absent from Bernal 
RHSN which we call the close packed random net-
work (CPRN). In the CPRN the mean volume 
offered to each sphere is minimum: 

vc = (vo/yc) = 1-57 v0 (5) 
and the close contact coordination number reaches 
its maximum value: 

y]c= 8.1 • (6) 

3. Soft Sphere Liquid 
3.1. Bas ic R e l a t i o n s 

According to our model [1], a real liquid metal 
may be represented by an assembly of Einstein 
oscillators which vibrate at frequency v around the 
equilibrium positions of a CPRN with randomly 
distributed vacancies. The sphere diameter is de-

duced from the position K\ of the structure factor 
first peak by relation (3) while the packing fraction, 
which is supposed to be smaller than yc is deduced 
from the specific mass [x by: 

y = v0 (film) 

where M is the atomic mass. The number M of 
vacancies in the volume F is related to the packing 
fraction by equation: 

ylye = NI(N + M). 

The pair distribution function (P.D.F.) and the 
structure factor of such a liquid are given by: 
Pf(r) 

= (4 n o2)~3/2 J P £ s ( r - ? ) e x p ( - r ' 2 / 4 < 7 2 ) d 3 / , 
Afy(K) = 1 + exp(— o2K2) [A™(K) - 1] 
where: 

a 
h / hv 

2 = 8 ^ » 7 C O t h 2 KT 

and h is the Planck constant. The broadening of the 
first neighbour peak in the P.D.F. is responsible for 
the damping of the structure factor oscillations at 
large K according to relation: 
lim Asdsy(K) = 1 + ^ y e x p ( - cr2 K2) sin (Kd)/Kd. (7) 
K O O 

Conversely, Eq. (7) allows the determination of the 
vibration frequency from the damping of the struc-
ture factor oscillations. 

On the other hand, owing to the broadening of 
the first neighbour peak, another coordination 
number Z is often used whose definition is: 

d 
Z = 2 gjP(r) d3r. 

o 
This coordination number is larger than 8.1 since 
neighbours which were not in close contact in the 
original CPRN are now included in this definition. 
For most liquid metals near the melting point: 
Z ^ I O . 

3.2. E q u a t i o n of State 
Integration of the Ornstein Zernike relation 

would lead to the equation of state, however, we 
follow a more significant approach due to P. 
Nozieres. The free energy of the liquid is the sum 
of two contributions: the oscillator free energy [4]: 

Fa = 3N 
hv \ I — hv 

(where Ua is the zero oscillation energ}*) 

- N U a 
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and the vacancy free energy: 
(N + M)! 

Fh — MUh — k T In N\M\ 

where Uh is the vacancy formation energy while the 
entropy term represents the number of arrange-
ments of M holes on N-\-M sites. Both Ua and Uh 
can be calculated if one assumes that only first 
neighbour pairs contribute to these energies. Since 
1 / N , 

Z — •- - is the mean number of first neigh-
2\~ N + M 
bour pairs per atom the total pair nergy is: 

1 N 
U — —NUq-Z — — 

2 N + M 

= — N ( iz Uq) 
N 

M — — — azu0) N + M V2 ; 

where — Uo is the energy of one atomic pair. This 
approximation leads to a zero oscillation energy: 

Ua=\ZU0 

while the hole formation energy is given by: 

N N 
Uh \ZU0 

N + M = Ua N + M 

Remembering that V— (N + M) vc and assuming 
that Uo and v are independent of the number den-
sity one obtains the equation of state: 

)T,N 

1 \ 
Uav c 

kT 
In 

Ve 1 Nv c 
V 

NV 
V (8) 

The same result has already been obtained [5] by 
Barker in his lattice theory of the liquid state. At 
low temperature, the isotherms exhibit two extrema 
with one liquid and one gaseous branch while, at 
high temperature, these isotherms are monotonic. 
The critical temperature is given by: 

kTc={Ual2) = {Z Uo/4). 

In the case of rare gases, where measurements are 
available, the calculated Tc value is larger than the 
experimental one. This result is not surprising since 
the model becomes too crude at low density where 
the vibration frequency should depend strongly on 
the density. However, the discrepancy is less than 
in Barker model because the coordination number Z 

is approximately equal to 10 instead of 12 which 
is the value of a close packed lattice used by Barker. 

Simulation of Binary Liquid Alloys 
by Hard Sphere Aggregates 

For the sake of simplicity vibrational effects are 
excluded from our binary alloy study. In practice, 
hard sphere mixtures should provide a good de-
scription of liquid alloys where atomic radii are 
known to be additive and the structure is dominated 
by local order phenomena. 

A liquid hard sphere alloy can be simulated by a 
randomly oriented aggregate (or cluster) with vo-
lume V containing N\ spheres of diameter d\ and 
N2 spheres of diameter d2. For a given packing 
algorithm, such an aggregate depends on three 
parameters: 

— the sphere diameter ratio ö = d2ld\, 
— the atomic concentration of chemical species 1 

ci = iVi/(iVi + N2) = Ni/N 
(or c2 = N2/N = 1 — ci) 

and the total packing fraction: 
n Nxd^ + Nzd^ 

y = 6 V 

The partial packing fractions of species 1 and 2 are 
deduced from y, d and Ci by means of relations: 

c2 Ö3 

y i 
cl 

ci + c2 Ö3 y 2 cl + c2 d3 (9) 

1. Geometrical Packing Algorithm 

In order to study the structure variations of hard 
sphere mixtures with concentration, sphere diam-
eter ratio and local order, 80 aggregates contain-
ing 5000 spheres have been built with the aid of the 
time saving computing techniques described in Ref. 
[1]. The following geometrical packing algorithm has 
been used: Starting from an initial triangular seed 
of three spheres in contact, each aggregate is grown 
by successive additions of new spheres in contact 
with three spheres 0, A and B of the already existing 
aggregate. The "central" particle 0 is randomly 
chosen in the cluster and the pair A, B of particles 
belongs to its close neighbourhood QQ. The choice 
of the pair A, B among all pairs belonging to QQ as 
well as the chemical nature of the new particle P 
depend on some chemical packing algorithm which 
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determines the local chemical order and will be 
specified in the next section. If do, d\, dB and dp 
are the diameters of spheres 0, A, B and P, the 
coordinates of P are easily calculated since it is 
situated at distances \ (do - f dp), £(c?a + ^p) and 
I (^b + ^p) from 0, A and B. If the new sphere P 
does not overlap any sphere of its close neighbour-
hood Qp it is integrated to the cluster. The process 
is then repeated by chosing other pairs A, B be-
longing to the neighbourhood of 0 until Qo is full, 
in which case another central particle 0' is randomly 
chosen in the cluster and so on. 

2. Chemical Packing Algorithms 

In analogy with order phenomena in solid 
solutions, one may distinguish disordered liquid 
alloys where chemical species are randomly mixed, 
ordered liquid alloys where unlike atoms attract 
each other and segregated liquid alloys where like 
atoms attract each other. These three alloy classes 
have been simulated by means of simple chemical 
packing algorithms. In all these algorithms the 
chemical nature of a particle P is specified with the 
aid of a chemical index ip which is equal to 1 or 2 
if P belongs to species 1 or 2. 

Disordered alloys have been simulated with the 
aid of a chemical packing algorithm R I which is 
symmetric with respect to both chemical species. 
According to RI , the new particle P which is added 
to the growing cluster with actual concentration cia 

belongs to species 1 if Cia ^ C\ and to species 2 if 
Cia > ci. P is brought tangentially to the sphere 0 
and to a randomly chosen pair A, B pertaining 
to Qo *. 

Special attention has been paid to ordered alloys 
which have been simulated with the aid of two 
chemical packing algorithms, namely 01 and 02. 

According to algorithm 01, the new particle P 
belongs to species 1 if cia ^ Ci and to species 2 if 
Cia > Ci. It is brought tangentially to the sphere 0 
and to a pair A—B pertaining to QQ which is chosen 
so as to maximize the number of 1—2 contacts be-
tween 0, A, B and P, i.e. to make the sum of their 
chemical indices io + + ib + *p as close as pos-

* A second algorithm R2 for disordered alloy generation 
has also been tested in which a random number W is first 
chosen in the interval [0.1] and thenew particle P belongs 
to species 1 if W sS ci or to species 2 if IF > ci. Within 
the precision of our calculations, this algorithm gives the 
same result as the first one because randomness is already 
present in the choice of 0, A and B. 

sible to 6. This chemical packing algorithm is sym-
metric with respect to both chemical species. 

According to algorithm 02, a pair A—B of par-
ticles is first randomly chosen in QQ. If one of the 
three particles 0, A and B belongs to species 1, the 
new particle P belongs to species 2 while if 0, A 
and B belong to species 2, P belongs to species 1 if 
cia ^ Ci and to species 2 if cia > Ci. As usual, P is 
then brought tangentially to the spheres 0, A and B. 
This new ordering rule is asymmetric with respect 
to chemical species since 1-1 contacts are forbidden. 
(It is obviously impossible to forbid 1-1 and 2-2 
contacts at the same time, or to forbid 1-2 con-
tacts.) 

Segregated alloys have been simulated with the 
aid of the symmetric packing algorithm S. Accord-
ing to S, the chemical nature of the new particle P 
is still 1 if c i a < c i and 2 if c i a > c i . It is brought 
tangentially to the sphere 0 and to a particle pair 
A—B pertaining to QQ which is chosen so as to 
maximize the number of like contacts between 0, 
A. B and P, i.e. to make the sum of their chemical 
indices io + i\ + + ip as close as possible to 
4 or 8. 

3. Ci and d Variation Range 

If symmetric algorithms are used (RI, 01, S) the 
variation of the alloy structure with concentration 
and sphere diameter ratio 6 may be studied in the 
reduced intervals: 

0 ^ ci ^ 1 , <5^1 
or 0 ^ ci ^ 0.5 , <5 > 0 

since the following symmetry relations are fulfilled 
P^(r/d2) = P\\6'{r{dl), 
P^(r/d12) = P\\6'(rld[2), 

or A%\Kd2) = A\\d'(Kd[), (10) 
A^6(Kd12) = A^d'(Kd'v2) 

where c'i = 1 — C\, d' = 1/(5 and d0Llj = \ - f dp). 

If the non symmetric order algorithm 02 is used, 
concentrations larger than c"iax(<3) cannot be reach-
ed. Table 1 shows that c"iax((3) corresponds to a 
constant number of 2-2 contacts per atom 2: 
2̂2in(<5) = 4. Actually, "̂l111 is the minimum value 

of the 2-2 partial coordination number which is 
needed to build a continuous RHSN of spheres 2 
with isolated atomic holes for the accomodation of 
non contacting spheres 1. 
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" ~ ~ - ~ Table 1. Maximum concentration and minimum 
d 0.80 0.87 0.95 1 1.05 1.15 1.-0 partial coordination number in ordered alloys 

obtained by algorithm 02. 
C r x (S) 0.220 0.246 0.272 0.287 0.315 0.356 0.396 
r j T ( ö ) 3.94 3.92 3.94 4.01 3.92 3.96 4.02 

In practice, the variations of the alloy structure 
have been studied with 10% concentration steps 
and for values of the atomic diameter ratio (<5 = 0.8, 
0.87, 0.95, 1, 1.05, 1.15, 1.25) which cover most of 
the experimental range. Numerical values are 
available on demand. 

4. Shape of the Aggregates 

A spherical shape is given to the clusters by im-
posing the condition that the distance between a 
particle and the center of the cluster must be less 
than: 

n< 
d, N 

- (ci + c2 <53) 
y 

1/3 
— '"max 

Conversely, the cluster radius B is deduced from the 
mean distance of the particle to the center of the 
cluster according to relation: 

4 _ 4̂  1 * 
R ~ 3 r m ~ 3 N fr*' 

B may also be calculated from the mean square 
distance rms of the particles to the center of the 
cluster: 

3 " 
- — V 2 
3 N V 1 • 

The comparison between R and R' leads to the 
definition of a sphericity coefficient a = B'/B which 
should be equal to 1 for a perfectly spherical 
cluster. Departures from sphericity are character-
ized by the relative difference (a — l)/a which, for 
all our clusters, is less than 10~3. 

5. Partial Pair Distribution Functions 

The partial pair distribution functions Paß (r) are 
defined as the probability per unit volume of finding 
an a particle at a distance r from another ß particle 
normalized in such a way that they tend to unity 
as r approaches infinity. These functions are de-
duced from the number dNaß(r) of distinct <x-ß 
atomic pairs in the cluster whose distance 
rif = I ~" ri I *n interval r, r + dr: 

dNxß (r) = c« cß o2 (2 - <5aß) S (r) Pa/J (r) dr 
for r < 2 R (11) 

where d^ß is the Kronecker function (daß = 0 if 
a =j= ß and d^ß = 1 if a = ß), and 

S(r) = \ n*(2B -r)*(4R + r) r2 

a geometrical factor due to the finite size of the 
spherical cluster. 

6. Partial Coordination Numbers 

Within a sphere of radius r, the mean number 
Zaß (r) ° f ß atoms surrounding an a one is given by : 

Zaß (r) = J Paß (u) 4nu2 du (N/ V) cß 
o 

and the total number Zx(r) of atoms surrounding 
an a one by : 

Z*(r) = ZZav(r). 

In hard sphere mixtures, where first neighbour 
peaks are described by <5 functions, it is useful to 
consider the mean numbers rjaß of ß atoms in close 
contact with an a atom, or partial coordination 
numbers: 

rjaß = Zaß(daßA- e) (12) 

where e is very small with respect to daß(s = 0.05 d\ 
is practically equal to the step of our Paß cal-
culations). 

The non diagonal partial coordination numbers 
fulfill the obvious relations: 

rjaßCa = rjßaCß for a #= ß . (13) 

The total number of close contact neighbours to an 
a atom are given by: 

v 

7. Bhatia Thornton's Partial structure Factors 

The coherent scattering cross-section of a liquid 
alloy da/dQ may be expressed with the aid of 
several partial structure factor (P.S.F.) sets which 
are linear combinations of one another [6]. Each set 
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completely defines the alloy structure. However, the 
physical meaning of each set is different and it is 
preferable to chose the set according to the physical 
nature of the problem being studied. 

In the case of binary alloys, where the set of 
independent scattering factors b\ and b2 may be 
replaced by the set: 

b = c\ bi -f- c2 b2 , Ab = b\ — b2 . 

Bhatia and Thornton [7] have introduced a set of 
structure factors which are quite useful for the 
study of local order phenomena since they are 
associated with the different correlations between 
total number density and concentration. The cross-
section is then expressed as: 

do/dQ = b*SNN + 2c1bAbSNci + c1c2{Ab)2SClCl. 

S2Snn is the cross section of the "total" liquid 
which one measures when both alloy components 
have the same scattering factors. 

Bhatia and Thornton (B.T.) partial structure 
factors fulfill simple inequality relations arising 
from the fact that da/dü must be a positive 
quadratic form in b and Ab: 

SNN 0 , SCLCL > 0 , 

SNN SCLCL ^ (ci/c2) S%CL. (15) 

SNN, SNC and SEC may be calculated from their 
Debye sum expressions [6] or from the following 
integral representations: 
SNN = 

1 + <? J (Ci 2 Pi! + c22 P22 + 2 C 1 C 2 Pi2 - 1) etKr d$r , 
^Nci = 

QC2$ [Ci P n - c2 P22 + (c2 - Ci) P12] e « ' d 3 r , (16) 
SC1C1 ~ 

1 + Q Ci c2 J ( P n + P 2 2 - 2 P12) eiKr d3r. 

However, in both methods, the truncation at 
r = 2 B produces spurious oscillations for 

K < 6/(di + d 2 ) . 

Therefore the small K limits of the partial structure 
factors are not accessible by our calculations and 
must be deduced from the study of density and con-
centration fluctuations. 

8. Other Sets of Partial Structure Factors 

A second expression of the cross-section is given 
by [8]: 

do/dQ = Zb*bß(c*cß)1/2N*ß(K) • 
aß 

The integral representation of the corresponding 
partial number (P.N.) structure factors is: 

N«ß =ö«ß+Q (CaC0)l/2 J [Pa/J _ 1] e^rd3r . (17) 

The diagonal term &2caiVaa represents the cross-
section of partial liquid a and must be positive. As 
K approaches infinity it tends to: 

lim IVaa = 1 + r j^s iniKd^lKd« . 
K-* 00 

except when a a = 0. 
Fournet, Faber and Ziman [9], [10] (FFZ) give 

another expression for the coherent cross-section of 
a liquid alloy: 

da/dQ 

= 2 2 c « c i — M 2 + ^CzCßbzbßAaßiK). 
aß aß 

The FFZ partial structure factors have the following 
integral expressions: 

A a ß = 1 + e J (P*ß - 1) e ^ d 3 r (18) 

which do not explicitly involve the concentrations. 
Therefore the concentration variations of the FFZ 
structure factors characterize the deviations from 
the ideal behaviour where the partial pair distribu-
tion functions are concentration independent. The 
diagonal FFZ structure factor A a a which is not 
proportional to any partial cross-section fulfills 
a complex inequality relation [11]. 

Substitution Alloys: (5 = 1 

1. Relation Between Structure and Order Parameter £ 

The study of liquid alloys with components of 
equal size or substitution alloys, displays the effect 
of pure chemical ordering. In such cases, within our 
simple algorithms, both kinds of atoms have the 
same total number of neighbours for all pair 
distances: 

Z1(r)=Z2(r) 

and the partial pair distribution functions fulfill 
the following relations: 

C1P11 + C2P12=C2P22 + C1P21= Pd(r) ( 1 9 ) 

where Ptf.(r) is the pair distribution function of the 
pure hard sphere liquid with the same sphere 
diameter d = d\ — d2. Thus, there are only two 
independent partial pair distribution functions. 
Furthermore, the maximum packing fraction is the 
same as for pure liquids: yc = 0.637 and the co-
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ordination numbers are related to y by : 

rji = = Vv= 12.7 y . (20) 

On the other hand, a statement equivalent to rela-
tion (19) is that there is no correlation between 
local number density and concentration since the 
permutation of an atom 1 by an atom 2 changes the 
local concentrations without changing the local 
densities. As a consequence, the use of B.T. forma-
lism is particularly convenient in that case since: 

SNN=1 + Q$ [Pa (r) - 1 ] e^r d3r = Af* (K) 
(21) 

is independent of the local chemical order and equal 
to the structure factor of the pure liquid with the 
same packing fraction, while: 

SNC — 0 (22) 
and: 

SEC = 1 + Q ci J [ P n - P12] e^r d3r (23) 

completely defines the local chemical order. 
Let us introduce the Bethe first neighbour order 

parameter [12] which has been used by Steeb and 
Hezel [13] in the analysis of their data on Mg-Ag 
alloys: 

PCr) i r 

^ _ 1 Vi2_ 1 ^ n^ 1 
Vi c2 1)2 ci 

(24) 

The large K behaviour of SNN and Sec is parti-
cularly revealing since it only depends on nv and f 
through the asymptotic relations: 

lim SNN = 1 + rjv[sin (K d)/K d], (25) 
K-> OO 

lim Sec = 1 + 1 rjy [sin (K d)/K d] . (26) 

These asymptotic forms become fairly good ap-
proximations beyond K d ^ . 5 n but they do not hold 
below K d^. 5 n. In particular, at smaller K values, 
the behaviour of Sec is related to the overall atomic 
order and also depends on order parameters of more 
distant neighbours. However, the qualitative be-
haviour predicted by Eq. (25) is still valid for small 
K and SEC superstructure oscillations increase with 
|£| (see Figure 1). Inversely, knowing c\ and the 
amplitude of SEC first extrema which are not too 
sensitive to vibrational effects, it should be possible 
to calculate £ and to derive the mean proportion of 
like to unlike atoms around each atom (see Table 2). 

2 -

+ 
+-H-+1 

4 r/d 

SmJK* ' '* •T•,, * , . . . . 

0.518 

• • I i . . . . 
10 20 Kd 

Scc (K)j ' 1 1 1 ' i i i 1 j i i 1 i i i 1 1 i I 1 1 i r 

.012 v̂  r v 

-on •••// """* 
-024/7 
Q38'' 
_J I 1 I 1 I I 1 I I 1 I I I ! I L_l l_J I I 1 U 

10 20 Kd 
Fig. 1. Variations of B.T. structure factors with order pa-
rameter | in substitution alloys. 

2. Disordered Alloys: £ = 0 

This is the simplest case where the presence of the 
second component introduces randomly distributed 
holes in the RHSN of the first component and vice 
versa. In these conditions, all three partial pair 
distribution functions are equal and concentration 
independent (see Figure 1): 

P n = P 1 2 = P 2 2 = pHS(r) 

and the partial coordination numbers are given by : 

r) ii = rjzi = c1rjy, 

»712= ??22 = c2rjy . (27) 
As a consequence £ = 0 and these alloys give rise 
to a constant Laue diffuse scattering SEE = 1- The 
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Table 2. Variation of the first SNN and SEC extrema with £ in substitution alloys (y = 0.518). 

Algorithm 02 02 02 01 S S 

Ci 0.10 0.20 0.287 0.5 0.3 0.5 
r)i<z\r\\ 1 1 1 0.694 0.644 0.441 

-0 .110 -0.236 -0 .381 -0 .391 0.120 0.116 
SNN(KI)-I 1.268 1. G8 1.245 1.268 1.230 1.235 
SEC (KS)-1 0.182 0.476 0.784 0.869 -0 .140 -0 .159 
SEC (KI)—L -0 .079 -0.181 -0 .288 -0 .279 0.077 0.093 

associated FFZ partial structure factors are equal, 
positive and concentration independent: 

A11 = A12 = A22 = Af?(K). 

This is the unique case where FFZ structure 
factors do not depend on concentration. Therefore 
the concentration method for partial structure 
factor determination is subject to the very restric-
tive conditions: <5=1, 1 = 0. 

3. Ordered Alloys: | < 0 
3.1. C o m m o n Proper t i e s 

In ordered alloys obtained by algorithms 01 or 02, 
the presence of the second component introduces 
non randomly distributed atomic holes in the RHSN 
of the first component and vice-versa. As a conse-
quence, the partial P.D.F. depend on concentration. 

Since the behaviour of SNN equally depends on 
all chemical pairs, it is not modified by atomic 
ordering. Thus the first SNN peak at K\ is still 
related to d through relation (3). On the other hand, 
in close analogy with the case of order phenomena 
in crystallized alloys, atomic ordering produces an 
overall repetition of a new distance ds. This new 
pseudoperiod is related to the chemical packing 
algorithm, i.e. to the order parameters of the first 
few neighbours and gives rise to a sharp "super-
structure" peak at 

Ks = 0.612 Kx. (28) 

It turns out that ds can be interpreted as the 
distance between two atomic "layers" belonging to 
the same chemical species separated by one atomic 
"layer" belonging to the other chemical species: 

2 y'2 d 
d s = j '3 = 0.612 ' 

On the other hand, at large K, SNN and SEC oscillate 
in phase opposition according to relations (25) 
and (26). 

Fig. 2. Variations of partial pair distribution functions 
with concentration in ordered substitution alloys obtained 
by algorithm 02. 

3.2. M a x i m u m Order A l l o y s 

In maximum order alloys where 1-1 contacts are 
forbidden, the main features of the partial P.D.F. 
are (see Figure 2): 
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i) the disappearance of the first neighbour delta 
peak in Pn corresponding to: rjn = 0 for all con-
centrations ; 

ii) the finite width of the first P n maximum 
which is the second neighbour peak; 

iii) the increase of the first neighbour delta peak 
in P12 corresponding to rj 12 = rji= 12.7 y. 

As a consequence in reciprocal space, A n is 
almost concentration independent (i), tends to a 
large negative value at small K and displays a 
sharp superstructure peak at Ks (ii) together with 
strongly damped oscillations at large K (ii) (see 
Figure 3). This A\\ behaviour has also been pre-
dicted by Laty et al. [14] in the dilute alloy limit. 
On the other hand, (K) tends to a positive value 
at small K and displays a superstructure dip at Ks 
together with increased oscillations at large K (iii) 
(see Figure 3). All these A12 features increase with 
concentration c±. ^422(ül) is almost concentration 
independent except for a superstructure bump at 
Ks whose height increases with C\ (see Figure 3). 
This indirect effect is due to the regular array of 
holes introduced by the ordered component 1 in the 
RHSN of component 2. 

In Figure 3, we have also plotted the variations 
of the P.N. structure factors with concentration. 
Their peak positions are obviously the same as for 
FFZ structure factors but Nn and N22 do not 
exhibitany negative part as anticipated in Part 8 
of the last section. 

4. Segregated Alloys: £>0 

The behaviour of these alloys, which correspond 
to I > 0, can be inferred from the behaviour of 
ordered alloys obtained by algorithm 01 by invert-
ing the roles of like and unlike chemical pairs. 
Owing to the overall increase of the minimum 
distance between unlike atoms, SEC exhibits a 
superstructure dip at Ks = 7.64/cfe where ds is the 
distance between two atomic layers belonging to 
different chemical species separated by one atomic 
layer. Consequently A n and A22 tend to positive 
values at small K and display superstructure dips 
at Ks together with increased oscillations at large 
K while 12 exhibits a superstructure bump at Ks 
and reduced oscillations at large K (see Figure 4). 
This A n behaviour has also been predicted by 
Latyet al. [14] in the dilute alloy limit. 

Fig. 4. FFZ structure factors of segregated substitution 
alloys. 

Size Effects 

When alloy components differ in atomic diam-
eter, the maximum packing fraction may be larger 
than in a pure hard sphere liquid since holes smaller 
than atomic size in the RHSN of the larger spheres 
can be filled by the smallest spheres [3]. However, 
we do not concentrate on this problem and our 
calculations correspond to y — 0.535. 

1. Disordered Alloys 

1.1. Coord inat i on Numbers 
The partial coordination numbers obviously 

depend on the maximum (integer) number p{d) of 
spheres with diameter di which can surround a 
sphere with diameter d2- p{6) increases with <5 
following a step-like curve whose discontinuities are 
given by the approximate Fejes Töth equation [15]: 

. I p n\ (<3 + l)2 

Sm [p-2 6 j 4<5(d + 2) * 

This equation is exact for p — 3, 4, 6 and 12 (i.e. 
for equilateral triangle, regular tetrahedra, octa-
hedra and icosahedra) and when p approaches in-
finity i.e. when the surface of sphere 2 is almost 
plane and covered by an hexagonal lattice of sphe-
res 1: 

lim p = (27r/j/3) <32 . 
<5 —>00 

Exact values of p(b) discontinuities which are 
slightly larger than Töth values (see Figure 5) have 
been calculated by Schütte [16]. A good approxima-
tion to the lower limit of the Schütte curve in the 
interval 0.5 < <5 < 1.5 is the linear relation: 
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Fig. 5. Variations of the maximum number of close contact 
neighbours with the sphere diameter ratio 
a) Schütte and van den Waerden values [16], 
b) Fejes Töth approximation [15], 
c) linear approximation (29). 

p^ 126-1 (29) 

where p is no more an integer (see Figure 5). 
Thus it is natural to assume that the partial co-

ordination numbers of disordered alloys are ap-
proximately equal to: 

di 
rji = Vv 

rjy 
d C1 + C2Ö' 

d2 
Y)y 

ci + c2d 
(30) 

where d = c\ d\ -f- c2 d2 is the mean sphere diameter. 
For y = 0.535, numerical calculations confirm this 
assumption with a precision better than 0.5%. 

However, the variations of coordination numbers 
rj i2 and »721 with concentration do not follow the 

linear relations (27) (see Figure 6). Therefore it is 
difficult to define an order parameter which sepa-
rates local chemical order effects from size effects. 

1.2. V a r i a t i o n of D i so rdered A l l o y S t ruc -
ture W i t h C o n c e n t r a t i o n and Sphere 
D i a m e t e r R a t i o 

In disordered alloys randomly distributed holes 
are introduced by component 2 in the RHSN of 
component 1 but their size differs from d\. As a 
consequence, the partial pair distribution functions 
depend on concentration and sphere diameter ratio. 
This dependence is mainly reflected in the first 
neighbour delta peaks of the partial P.D.F. through 
the partial coordination numbers rjaß studied in the 
last section. The other P\\ oscillations shift towards 
larger r as b increases from 1 upwards while the 
other P12 oscillations are less sensitive to d varia-
tions (see Figure 7). 

The corresponding FFZ structure factors do not 
exhibit any superstructure peak nor large negative 
part. However, their first peaks become more and 
more asymmetric and the oscillation damping more 
and more important as d goes away from 1 (see 
Figure 8). The partial structure factor Aaa of the 
smallest size component is obviously the most 
affected. Numerical calculations show that the posi-
tions of A aß first maxima are approximately 
given by the phenomenological relation: 

Kf = 
1 

daß 
7.64 - 4.32 

d 
daß 

- 1 

for 0.8 < Ö < 1.25 (31) 

Conversely, from the positions of the first peaks of 
the experimental P.S.F. one may calculate dn, d\2 

and d22 and check the validity of the additivity law 

Fig. 6. Variations of the partial coordination numbers with concentration and sphere diameter ratio in disordered alloys. 
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for atomic diameters since d\i should be equal to 

On the other hand, SNC "size oscillations" appear 
which are due to the correlation between number 
density and concentration. SNC and SEC size oscilla-
tions increase as <3 goes away from 1. SNN first 
peak is situated at: 

K = 7.64/d (32) 

as might be expected (see Figure 8). According to 
relations (16) BT structure factors display beating 
oscillations at large K betAveen three terms propor-
tional to sin (Kdi)/Kdi, sin (Kdi2)IKdi2 and 
sin (K d2) / K d2. This behaviour is usually masked 
by the oscillation damping due to atomic vibrations. 
Nevertheless, it can explain the long range of BT 
structure factor oscillations in disordered alloys. 

2. Ordered Alloys 

2.1. General B e h a v i o u r 
The qualitative behaviour of ordered alloys with 

nonequal size components is the same as the one of 
ordered substitution alloys. Let us compare the 
BT structure factors of ordered alloys (obtained by 
algorithms 01 or 02) with the BT structure factors 
of disordered alloys corresponding to the same d 
value. SNN is almost insensitive to local chemical 
order and identical to SNN of disordered alloys. In 
particular the position of its first peak is still given 
by Equation (32). On the other hand, the position 
of SNC size oscillations is the same as in disordered 
alloys but their amplitude is smaller. The main 
difference with disordered alloys lies in the first Sec 
superstructure peak whose relative position with 
respect to SNN first peak is almost independent of 
d and given by equation: Ks^. 0.61 K\. SEC oscil-
lations at larger K values are identical with those 
of disordered alloys (see Figure 10). 

2.2. V a r i a t i o n o f the S t r u c t u r e F a c t o r s o f 
M a x i m u m Order A l l o y s 

Maximum order alloys obtained by algorithm 02 
are characterized by the complete disappearance of 
the Pn first neighbour delta peak (see Figure 9). 
Consequently, A n exhibits a large negative part at 
small K, a strong superstructure peak at K$,(d) and 
is strongly damped at large K. In particular it only 
displays two oscillations if <5 > 1 and three oscilla-
tions if Ö < 1 (see Figure 10). On the other hand, 
A i2 reaches positive values at small K and displays 

P , , ( r ) 

Fig. 9. Variations of the partial pair distribution functions 
with sphere diameter ratio in ordered alloys obtained by 
algorithm 02. 

a negative superstructure dip at Ks and increased 
oscillations at large K. Finally, ^22 only displays an 
"indirect" superstructure bump which may reduce 
to a slight asymmetry of the first peak if (5 is larger 
than 1 (see Figure 10). 

Comparison with Experiments 

1. First Results 

A direct comparison between calculated and mea-
sured PSF is preferable to a comparison between the 
corresponding PDF which requires a Fourier trans-
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Fig. 10. Variations of FFZ and B.T. structure factors with 
sphere diameter ratio in ordered alloys obtained by algo-
rithm 02. 
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form of the experimental data and is subject to 
truncation and normalization errors. Furthermore, 
conclusions may be drawn from the behaviour of 
the PSF in a limited K interval since local chemical 
order phenomena produce characteristic effects be-
fore the first PSF peaks and are dampened by 
vibrational effects at large K. 

The observation of prepeaks in the scattering 
patterns of liquid alloys has been shown to be 
related to order phenomena by Steeb et al. [13] as 
early as 1966 and many analogous studies have since 
been performed [17] —[22]. However, since model 
calculations show that partial structure factors 
usually depend on concentration, we treat in detail 
those later partial structure factor determinations 
which are not based on the assumption of concen-
tration independency. Such a partial structure 
factor determination in binary alloys requires the 
measurement of three independent cross-sections 
corresponding to the same concentration and the 
resolution of a linear system of three equations in 
A n , Ai2 and A22 [23]. This delicate procedure has 
been achieved in only a few particular cases. 

2. Disordered Alloys 

The first measurements not based on the assump-
tion of concentration independency were performed 
by Enderby, North and Egelstaff [11] using the 
isotopic substitution method. Their results show 
that Cu6-Sn5 liquid alloys are disordered since the 
PSF do not exhibit any superstructure peak nor 
large values of Furthermore, Cuß-Sns partial 
structure factors exhibit large first peak asym-
metries corresponding to a strong size effect. How-
ever, the atomic diameters which are deduced by 
relations (31) from the position of the PSF first 
peaks seem not to be additive. This result is con-
firmed by North and Wagner measurements on the 
same system [24], It may be related to the'anom-
alous' shoulder on the first peak of the pure tin 
structure factor which indicates a special liquid Sn 
structure or to a departure from sphericity of the 
interatomic Sn-Sn potential. It may also arise from 
covalency effects. 

3. Ordered Alloys 

In ordered alloys, partial structure factor deter-
minations not based on the assumption of concen-
tration independency have been reported by Bletry 
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A j t / \ / " \ 

y . 
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• 1 ; \ 
/ \J 
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J i . . 1 1 .. 1 1 : . . l.., 1— 
K A 4 
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Algorithm 0-j 
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Fig. 11. Comparison between model curves and experimen-
tal B.T. structure factors in lithium based alloys. By cour-
tesy of Drs. Ruppersberg, Speicher and Reiter. 
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and Sadoc [25] in their study of amorphous ferro-
magnetic Co-P alloys by the polarized neutron 
method. Their results display all the qualitative 
features of ordered alloj^s listed below: 

i) large negative value of ^4pp(0) and super-
structure peak at K§ in ^4pp , 

ii) large negative superstructure dip at Ks in 
Aco-p, 

iii) 'indirect' superstructure bump at Ks in 
Aco-Co-

However, their precision is too limited for a quanti-
tative interpretation. 

Ruppersberg, Speicher andReiter's measurements 
on lithium based alloys [26], [27] are much more 
accurate and agree almost perfectly with model 
calculations (see Figure 11). In both Li-Ag [26] and 
Li-Pb [27] systems, size effects seem to be negligible 
since the three FFZ structure factors correspond to 
the same first peak position. Thus SNC (K) ^ 0 and 
the position of Sec superstructure peak at K§ is in 
good agreement with Equation (28). Furthermore, 
from the amplitude of SEC oscillations one deduces 
the following values for the order parameters: 

| = - 0.32 ± 0.05 or ^Li-Pb/^Li ^ 0.66 
in LiöoPböo alloys 

and | = — 0.24 ± 0.05 or rju-Ag/rju ^ 0.35 
in Li72Ag28 alloys. 

At large K, SEC oscillations are in phase opposition 
with SNN oscillations in agreement with Equations 
(25) and (26). Furthermore, it is very likely that the 
observed oscillation damping could be interpreted 
if atomic vibrations were taken into account. Such 
a good agreement between experimental and calcu-
lated partial structure factors of binary alloys 
provides an a posteriori proof for the validity of the 
model in the pure metal case. 

Conclusion 

In this paper, we have shown that the structure 
of liquid metals and alloys may be interpreted in 
simple geometrical terms. Local chemical ordering 
in liquid alloys produces large positive or negative 
values at small K as well as sharp and intense super-
structure peaks or dips in the partial structure 
factors. These modifications with respect to dis-
ordered alloys occur before the first peaks of the 
partial structure factors and may introduce drastic 
changes in the calculation of transport properties. 
Furthermore, size difference between alloy compo-
nents as well as chemical ordering causes the partial 
structure factors to depend on concentration. Thus, 
the methods for partial structure factor determina-
tion which are based on the assumption of concen-
tration independency are shown to be uncertain. 

From a practical point of view, the presence of 
"prepeaks" in the scattering patterns of a liquid 
alloy is the sign of local chemical order phenomena . 
(Thus, it is hopeless to expect a disordered solid 
solution to be formed by quenching such an alloy 
from the liquid state). However, careful measure-
ments are needed in order to determine the contri-
bution of each partial structure factor to the total 
scattering pattern and to derive the mean local 
neighbourhood of each chemical species. 
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